Acetaldehyde-ethanol interactions on calcium-activated potassium (BK) channels in pituitary tumor (GH3) cells
نویسندگان
چکیده
BACKGROUND In the central nervous system ethanol (EtOH) is metabolized to acetaldehyde (ACA) primarily by the oxidative enzyme catalase. Evidence suggests that ACA is responsible for at least some of the effects on the brain that have been attributed to EtOH. Various types of ion channels which are involved in electrical signaling are targets of EtOH like maxi calcium-activated potassium (BK) channels. BK channels exhibit various functions like action potential repolarization, blood pressure regulation, hormone secretion, or transmitter release. In most neuronal and neuroendocrine preparations at physiological intracellular calcium levels, EtOH increases BK channel activity. The simultaneous presence of ACA and EtOH reflects the physiological situation after drinking and may result in synergistic as well as antagonistic actions compared to a single application of either drug. The action of ACA on electrical activity has yet not been fully established. METHODS GH3 pituitary tumor cells were used for outside-out and inside-out patch-clamp recordings of BK activity in excised patches. Unitary current amplitude, open probability and channel mean open time of BK channels were measured. RESULTS Extracellular EtOH raised BK channel activity. In the presence of intracellular ACA this increment of BK activity was suppressed in a dose- as well as calcium-dependent manner. Mean channel open time was significantly reduced by internal ACA, whereas BK channel amplitudes were not affected. The EtOH counteracting effect of ACA was found to depend on succession of application. EtOH was prevented from activating BK channels by pre-exposure of membrane patches to ACA. In contrast BK activation by a hypotonic solution was not affected by internal ACA. CONCLUSIONS Our data suggest an inhibitory impact of ACA on BK activation by EtOH. ACA appears to interact specifically with EtOH at BK channels since intracellular ACA had no effect when BK channels were activated by hypotonicity.
منابع مشابه
Potent activation of large-conductance Ca2+-activated K+ channels by the diphenylurea 1,3-bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS1643) in pituitary tumor (GH3) cells.
1,3-Bis-[2-hydroxy-5-(trifluoromethyl)phenyl]urea (NS1643) is reported to be an activator of human ether-à-go-go-related gene current. However, it remains unknown whether it has any effects on other types of ion channels. The effects of NS1643 on ion currents and membrane potential were investigated in this study. NS1643 stimulated Ca(2+)-activated K(+) current [I(K(Ca))] in a concentration-dep...
متن کاملIonic currents in two strains of rat anterior pituitary tumor cells
The ionic conductance mechanisms underlying action potential behavior in GH3 and GH4/C1 rat pituitary tumor cell lines were identified and characterized using a patch electrode voltage-clamp technique. Voltage-dependent sodium, calcium, and potassium currents and calcium-activated potassium currents were present in the GH3 cells. GH4/C1 cells possess much less sodium current, less voltage-depen...
متن کاملParadoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells.
Activation of high-conductance Ca(2+)-activated K(+) (BK) channels normally limits action potential duration and the associated voltage-gated Ca(2+) entry by facilitating membrane repolarization. Here we report that BK channel activation in rat pituitary somatotrophs prolongs membrane depolarization, leading to the generation of plateau-bursting activity and facilitated Ca(2+) entry. Such a par...
متن کاملPhosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S)
INTRODUCTION Gases, such as nitric oxide (NO), carbon monoxide (CO), or hydrogen sulfide (H2S), termed gasotransmitters, play an increasingly important role in understanding of how electrical signaling of cells is modulated. H2S is well-known to act on various ion channels and receptors. In a previous study we reported that H2S increased calcium-activated potassium (BK) channel activity. AIMS...
متن کاملGlucocorticoid regulation of calcium-activated potassium channels mediated by serine/threonine protein phosphatase.
Adrenal glucocorticoids exert powerful effects on cellular excitability in neuroendocrine cells and neurons, although the underlying mechanisms are poorly understood. In metabolically intact mouse anterior pituitary corticotrope (AtT20) cells glucocorticoid-induced proteins render large conductance calcium-activated potassium (BK) channels insensitive to inhibition by protein kinase A (PKA). In...
متن کامل